您现在的位置是:词典
右正则元,right normal element
2023-03-31 15:35词典 人已围观
1)right normal element
右正则元
2)left(right) regulor element
左(右)正则元
3)right regular band
右正则带
1.
By using ρ T,we establish a representation for a right regular band.
借助 ρT 建立右正则带的一种表
4)left(right) normal band
左(右)正规带
1.
Shevrin posed an open problem in Reference[1]: are semigroups whose lattice of subsemigroups is complemental periodic? In this paper, it is proved that the openproblem has positive answers for inverse semigroups, rectangular groups and E-right(left) unitary regular semigroups with left(right) normal band.
本文进一步证明了对逆半群、矩形群及幕等元集是左(右)正规带的E─右(左)么正正则半群,使公开问题有了肯定的回答。
5)I-right regular element
I-右正规元
1.
During the study of the structure of anti-regular circle,some types of I-right regular elements,I-regular right ideals and their simple qualities are given here.
在研究逆本原环的结构时对涉及到的I-右正规元、I-正规右理想给出了几种类型的I-右正规元、I-正规右理想及其简单的性质。
6)left(right) regular ordered semigroup
左(右)正则序半群
参考词条
Fuzzy左(Fuzzy右)正则半群 C-半环的伪强右正规幂等半环 左零半环的伪强右正规幂等半环 左零幂等半环的强右正规幂等半环 线性归一化
补充资料:正则元
正则元
regular ekment
【补注】完全由正则元组成的半群称为正则半群(优即-址s。”i一g。印).石生明译王杰校正则元[犯,面e触””吐;pery刀”p”诫,二eMenT),半群的 一个元素a,有给定半群的某元素x使得a二axa;若附加地还有ax=xa(对同一个x),则a称为完全正则的(colrlPlete坦叨】ar).设a是半群S的正则元,则S中由a生成的主右(左)理想可由某幂等元生成;反之,这些对称的性质的每一个都蕴涵a的正则性.若aba=a及b“b=b,则元素a及b称为互逆的(mut毯沮y~rse)(亦称为广义逆的(罗-nerali江月~rse)或正则共扼的(比即玩conj火笋记)).每个正则元皆有逆于它的元素;一般说来,它不是唯一的(见逆半群(mversion~一g皿p)).任意两个元素皆互逆的半群实际上是矩形半群(见幂等元的半群(ideTr甲以ents,~一grouPof)).每个完全正则元皆有一个与它交换的元素逆于它.一个元素是完全正则的,当且仅当它属于半群的某个子群(见Clif-i议旧半群(C五ffO心~一gro叩”.对正则少类,见Gre.等价关系(Gn笼11叫ulVd卜nce rehtions).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
右正则元,right normal element
右正则元
2)left(right) regulor element
左(右)正则元
3)right regular band
右正则带
1.
By using ρ T,we establish a representation for a right regular band.
借助 ρT 建立右正则带的一种表
4)left(right) normal band
左(右)正规带
1.
Shevrin posed an open problem in Reference[1]: are semigroups whose lattice of subsemigroups is complemental periodic? In this paper, it is proved that the openproblem has positive answers for inverse semigroups, rectangular groups and E-right(left) unitary regular semigroups with left(right) normal band.
本文进一步证明了对逆半群、矩形群及幕等元集是左(右)正规带的E─右(左)么正正则半群,使公开问题有了肯定的回答。
5)I-right regular element
I-右正规元
1.
During the study of the structure of anti-regular circle,some types of I-right regular elements,I-regular right ideals and their simple qualities are given here.
在研究逆本原环的结构时对涉及到的I-右正规元、I-正规右理想给出了几种类型的I-右正规元、I-正规右理想及其简单的性质。
6)left(right) regular ordered semigroup
左(右)正则序半群
参考词条
Fuzzy左(Fuzzy右)正则半群 C-半环的伪强右正规幂等半环 左零半环的伪强右正规幂等半环 左零幂等半环的强右正规幂等半环 线性归一化
补充资料:正则元
正则元
regular ekment
【补注】完全由正则元组成的半群称为正则半群(优即-址s。”i一g。印).石生明译王杰校正则元[犯,面e触””吐;pery刀”p”诫,二eMenT),半群的 一个元素a,有给定半群的某元素x使得a二axa;若附加地还有ax=xa(对同一个x),则a称为完全正则的(colrlPlete坦叨】ar).设a是半群S的正则元,则S中由a生成的主右(左)理想可由某幂等元生成;反之,这些对称的性质的每一个都蕴涵a的正则性.若aba=a及b“b=b,则元素a及b称为互逆的(mut毯沮y~rse)(亦称为广义逆的(罗-nerali江月~rse)或正则共扼的(比即玩conj火笋记)).每个正则元皆有逆于它的元素;一般说来,它不是唯一的(见逆半群(mversion~一g皿p)).任意两个元素皆互逆的半群实际上是矩形半群(见幂等元的半群(ideTr甲以ents,~一grouPof)).每个完全正则元皆有一个与它交换的元素逆于它.一个元素是完全正则的,当且仅当它属于半群的某个子群(见Clif-i议旧半群(C五ffO心~一gro叩”.对正则少类,见Gre.等价关系(Gn笼11叫ulVd卜nce rehtions).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
右正则元,right normal element
其他推荐
-
射有限群,pro finite group
1)pro finite group 射有限群 2)affine rational transformation 仿射有理变换 3)bilinear mappin... -
约化代数,reduced algebra
1)reduced algebra 约化代数 2)reductive Lie algebra 约化李代数 1. In this note,we gained a fo... -
循环连分数,recurring continued fraction
1)recurring continued fraction 循环连分数 1. In the paper,I research into the relation between t... -
正割法,the secant method
1)the secant method 正割法 1. On the convergence of the secant method in Banach space; Banach空间正...