您现在的位置是:课程教程文章

python中的遗传算法库怎么使用?

2023-12-18 16:46课程教程文章 人已围观

对于算法库小编提到的内容并不多,并不是这些内容不重要,而是想针对最实用而且简单点的内容跟大家降级,一次性给大家注入很多内容,相信大家的都已经晕乎了,小编大致看了下关于算法库,找到了一个大家肯定是必学的内容,就是关于遗传算法库,如果暂时还没有对这个名词了解的小伙伴,也可以大致看下以下内容,如果正在了解的小伙伴,一定要看下啦~详细内容见下文。

遗传算法库——scikit-opt

一个封装了7种启发式算法的 Python 代码库

(差分进化算法、遗传算法、粒子群算法、模拟退火算法、蚁群算法、鱼群算法、免疫优化算法)

安装

pip install scikit-opt

遗传算法示例代码

第一步:定义你的问题

-> Demo code: examples/demo_ga.py#s1

import numpy as np
 
 
def schaffer(p):
    '''
    This function has plenty of local minimum, with strong shocks
    global minimum at (0,0) with value 0
    '''
    x1, x2 = p
    x = np.square(x1) + np.square(x2)
return 0.5 + (np.sin(x) - 0.5) / np.square(1 + 0.001 * x)

第二步:运行遗传算法

-> Demo code: examples/demo_ga.py#s2

from sko.GA import GA
 
ga = GA(func=schaffer, n_dim=2, size_pop=50, max_iter=800, lb=[-1, -1], ub=[1, 1], precision=1e-7)
best_x, best_y = ga.run()
print('best_x:', best_x, '\n', 'best_y:', best_y)

第三步:用 matplotlib 画出结果

-> Demo code: examples/demo_ga.py#s3

import pandas as pd
import matplotlib.pyplot as plt
 
Y_history = pd.DataFrame(ga.all_history_Y)
fig, ax = plt.subplots(2, 1)
ax[0].plot(Y_history.index, Y_history.values, '.', color='red')
Y_history.min(axis=1).cummin().plot(kind='line')
plt.show()

运行效果:

好啦,以上就是关于遗传算法的全部内容了,不知道大家有没有了解学会了呢?以上内容是非常实用的,大家以后再项目编写时候,肯定是会遇到,因此,牢记掌握很重要的哦~

课程教程:python中的遗传算法库怎么使用?

上一篇:python算法库怎么安装?

下一篇:没有了

站点信息

  • 文章统计篇文章