您现在的位置是:课程教程文章

python中Sobel算子如何使用

2023-12-14 00:03课程教程文章 人已围观

说明

1、Sobel算子根据像素点的上下、左右相邻点的灰度加权差,在边缘达到极值的现象来检测边缘。

它具有平滑的噪声功能,并提供更准确的边缘方向信息。由于Sobel算子结合了高斯平滑度和微分求导(分化),因此结果会更具抗噪性,当对精度要求不高时,Sobel算子是一种常用的边缘检测方法。

2、Sobel算子仍然是过滤器,但它有方向。

dst=cv2.Sobel(src,ddepth,dx,dy[,dst[,ksize[,scale[,delta[,borderType]]]]])

实例

#coding=utf-8
importcv2
importnumpyasnp

img=cv2.imread("D:/test/26.png",0)

'''
在Sobel函数的第二个参数这里使用了cv2.CV_16S。
因为OpenCV文档中对Sobel算子的介绍中有这么一句:
“inthecaseof8-bitinputimagesitwillresultintruncatedderivatives”。
即Sobel函数求完导数后会有负值,还有会大于255的值。
而原图像是uint8,即8位无符号数,所以Sobel建立的图像位数不够,会有截断。
因此要使用16位有符号的数据类型,即cv2.CV_16S。
在经过处理后,别忘了用convertScaleAbs()函数将其转回原来的uint8形式。
否则将无法显示图像,而只是一副灰色的窗口。convertScaleAbs()的原型为:
dst=cv2.convertScaleAbs(src[,dst[,alpha[,beta]]])
其中可选参数alpha是伸缩系数,beta是加到结果上的一个值。结果返回uint8类型的图片。
由于Sobel算子是在两个方向计算的,最后还需要用cv2.addWeighted(...)函数将其组合起来。
其函数原型为:
dst=cv2.addWeighted(src1,alpha,src2,beta,gamma[,dst[,dtype]])
其中alpha是第一幅图片中元素的权重,beta是第二个的权重,gamma是加到最后结果上的一个值。
'''

x=cv2.Sobel(img,cv2.CV_16S,1,0)
y=cv2.Sobel(img,cv2.CV_16S,0,1)

absX=cv2.convertScaleAbs(x)#转回uint8
absY=cv2.convertScaleAbs(y)

dst=cv2.addWeighted(absX,0.5,absY,0.5,0)

cv2.imshow("orign",img)
cv2.imshow("absX",absX)
cv2.imshow("absY",absY)

cv2.imshow("Result",dst)

cv2.waitKey(0)
cv2.destroyAllWindows()

以上就是python中Sobel算子的使用,希望对大家有所帮助。更多Python学习指路:python基础教程

本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。

课程教程:python中Sobel算子如何使用

上一篇:python中Laplacian算子如何使用

下一篇:没有了

站点信息

  • 文章统计篇文章