您现在的位置是:课程

高中数学

2023-12-04 21:57课程 人已围观

知识梳理:

1.向量在平面几何中的应用
(1)用向量解决常见平面几何问题的技巧:
问题类型 所用知识 公式表示
线平行、点共线等问题 共线向量定理 a∥b⇔a=λb⇔x1y2-x2y1=0,
其中a=(x1,y1),b=(x2,y2),b≠0
垂直问题 数量积的运算性质 a⊥b⇔a·b=0⇔x1x2+y1y2=0,其中a=(x1,y1),b=(x2,y2),且a,b为非零向量
夹角问题 数量积的定义 cos θ=(θ为向量a,b的夹角),其中a,b为非零向量
长度问题 数量积的定义 |a|==,
其中a=(x,y),a为非零向量

(2)用向量方法解决平面几何问题的步骤:
平面几何问题向量问题解决向量问题解决几何问题.
2.平面向量在物理中的应用
(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.
(2)物理学中的功是一个标量,是力F与位移s的数量积,即W=F·s=|F||s|cos θ(θ为F与s的夹角).
3.向量与相关知识的交汇
平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题.
【知识拓展】
1.若G是△ABC的重心,则++=0.
2.若直线l的方程为:Ax+By+C=0,则向量(A,B)与直线l垂直,向量(-B,A)与直线l平行.

-->

站点信息

  • 文章统计篇文章