您现在的位置是:课程
【赵强老师】大数据公开课系列课程:Flink的批处理与流处理
2023-06-29 21:15课程 人已围观
Apache Flink是一个计算框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。其针对数据流的分布式计算提供了数据分布、数据通信以及容错机制等功能。基于流执行引擎,Flink提供了诸多更高抽象层的API以便用户编写分布式任务:
DataSet API, 对静态数据进行批处理操作,将静态数据抽象成分布式的数据集,用户可以方便地使用Flink提供的各种操作符对分布式数据集进行处理,支持Java、Scala和Python。
DataStream API,对数据流进行流处理操作,将流式的数据抽象成分布式的数据流,用户可以方便地对分布式数据流进行各种操作,支持Java和Scala。
Table API,对结构化数据进行查询操作,将结构化数据抽象成关系表,并通过类SQL的DSL对关系表进行各种查询操作,支持Java和Scala。
从部署上讲,Flink支持local模式、集群模式(standalone集群或者Yarn集群)、云端部署。Runtime是主要的数据处理引擎,它以JobGraph形式的API接收程序,JobGraph是一个简单的并行数据流,包含一系列的tasks,每个task包含了输入和输出(source和sink例外)。
DataSet API, 对静态数据进行批处理操作,将静态数据抽象成分布式的数据集,用户可以方便地使用Flink提供的各种操作符对分布式数据集进行处理,支持Java、Scala和Python。
DataStream API,对数据流进行流处理操作,将流式的数据抽象成分布式的数据流,用户可以方便地对分布式数据流进行各种操作,支持Java和Scala。
Table API,对结构化数据进行查询操作,将结构化数据抽象成关系表,并通过类SQL的DSL对关系表进行各种查询操作,支持Java和Scala。
从部署上讲,Flink支持local模式、集群模式(standalone集群或者Yarn集群)、云端部署。Runtime是主要的数据处理引擎,它以JobGraph形式的API接收程序,JobGraph是一个简单的并行数据流,包含一系列的tasks,每个task包含了输入和输出(source和sink例外)。